M1. (a) M1 $\mathrm{K}_{\mathrm{p}}=(\mathrm{P} \mathrm{Y})^{3} .(\mathrm{PZ})^{2} /\left({ }_{\mathrm{p}} \mathrm{W}\right)^{2} \cdot(\mathrm{pX}) \quad N B[]$ wrong

M2 temperature

M3 increase

M4 particles have more energy or greater velocity/speed

M5 more collisions with $E>E_{a}$ or more successful collisions

M6 Reaction exothermic or converse

M7 Equilibrium moves in the left

Marks for other answers
Increase in pressure or concentration allow M1, M5, M6 Max 3
Addition of a catalyst;
Decrease in temperature;
Two or more changes made;
allow M1, M5, M6
Max 3
allow M1, M2, M6 Max 3
allow M1, M6
Max 2
(b) (i) Advantage; reaction goes to completion, not reversible or faster

Disadvantage; reaction vigorous/dangerous
(exothermic must be qualified)
or $\mathrm{HCl}(\mathrm{g})$ evolved/toxic
or $\mathrm{CH}_{3} \mathrm{COCl}$ expensive
NB Allow converse answers
Do not allow reactions with other reagents e.g. water or ease of separation
(ii) $\Delta S=\Sigma S$ products $-\Sigma S$ reactants

| ) |  |
| :---: | :---: |
| Allow - 84 to score (1) mark |  |
| ¢ |  |
| $\begin{aligned} & =-21.6-298 \times 84 / 1000 \\ & =-46.6 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { or }-46600 \mathrm{~J} \mathrm{~mol}^{-1} \end{aligned}$ |  |
| Allow (2) for - 46.6 without units (Mark $\Delta G$ consequentially to incorrect $\Delta S$ ) (e.g. $\Delta S=-84$ gives $\Delta G=+3.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ) |  |

M3. (a) (i)


ONLY consider species involved in the step marked
(ii) Cycling clockwise about (*)

CE if step missing
$\Delta \mathrm{H}_{\mathrm{a}} \mathrm{Ba}+1^{\text {st }}$ IEBa $+2^{\text {nd }}$ IE Ba $+2 \Delta \mathrm{H}_{\mathrm{a}} \mathrm{Cl}+2 \mathrm{EACI}+\mathrm{LE}-\Delta \mathrm{HBBCl}_{2}=0$ (1) $+180+503+965+2 \times 122+2$ EA $-2056+859=0$ (1) $E A=-695 / 2=-(347$ to 348$)(1)$

Ignore units
Calculation -1 for each error
Mark conseq.
Notes: -695 scores (2)
+(347 to 348) scores (2)
-(286 to 287) scores (2)
+(286 to 287) scores (1)
-573 scores (1)
+573 scores (0)
(b) $\Delta S=\Sigma S$ products $-\Sigma S$ reactants

$$
=(63+223)-124=162(1)
$$

$$
\Delta G=\Delta H-T \Delta S \quad \text { or } \quad \Delta H=T \Delta S \text { or } T=\Delta H / \Delta S \text { (1) }
$$

or used correctly
$\Delta \mathrm{H}=859 \times 10^{3}(1)=\mathrm{T} \times 162$ $\mathrm{T}=(5300$ to 5304$) \mathrm{K}(1)$

Penalise if units ${ }^{\circ} \mathrm{C}$
-1 for each error + mark conseq.

M5. (a) (i) Standard enthalpy change:
$\Delta \mathrm{H}_{\mathrm{R}}=\Sigma \Delta \mathrm{H}_{\mathrm{f}}$ (products) $-\Sigma \Delta \mathrm{H}_{\mathrm{f}}$ (reactants) (1) or cycle
$\Delta H_{R}=([2 \times 0]+[3 \times-393.5])-(-824.2+[3 \times-110.5])(1)$ $=-24.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)$

Allow + 24.8 max one
Standard entropy change: $\Delta \mathrm{S}=\Sigma \mathrm{S}$ (products) - $\quad \Sigma \mathrm{S}$ (reactants) (1)

$$
\begin{aligned}
\Delta \mathrm{S}= & ([2 \times 27.3]+[3 \times 213.6])-(87.4+[3 \times 197.6])(1) \\
= & (54.6+640.8)-(87.4+592.8)(1) \\
= & 15.2\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)(1) \\
& \text { Allow }-15.2 \text { max one }
\end{aligned}
$$

(ii) $\Delta G=\Delta H-T \Delta S ~(1)$
$\Delta H$ negative and $-T \Delta S$ is negative (or $\Delta S$ positive or or correct calc) (1)
Hence $\Delta G$ is always negative (or feasible when $\Delta \mathrm{G} \leq 0$ ) (1)
(b) $\quad \Delta \mathrm{G}=\mathrm{O}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ Hence $\Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{S}$ (1)

```
T=\DeltaH/\DeltaS = 492.7 × 1000 / 542.6 (1)
    = 908 K (1)
    penalise missing 1000 by one mark
```

(c) $\Delta G(b)=\Delta G(a)$
$\left(492.7 \times 10^{3}-\mathrm{T} \times 542.6\right)=\left(-24.8 \times 10^{3}-\mathrm{T} \times 15.2\right)(1)$
$517.5 \times 10^{3}=527.4 \mathrm{~T}(1)$
$\mathrm{T}=981.2 \mathrm{~K}(1)$
Allow 980 - 982
Penalise missing 1000 by one mark

M6.C

