M1.	(a)	M1	$K_{p} = (_{P}Y)^{3}. (_{P}Z)^{2}/ (_{P}W)^{2}.(_{P}X)^{2}$) NB [] wrong	1		
	М2	tem	perature		1		
	МЗ	M3 increase					
	M4	a particles have more energy or greater velocity/speed					
	М5	more collisions with $E > E_a$ or more successful collisions					
	<i>M6</i> Reaction exothermic or converse						
	М7	<i>M7</i> Equilibrium moves in the left			1		
	Ma Incr Add Dec Two	rks fo ease i ition c rease o or m	r other answers in pressure or concentratio of a catalyst; e in temperature; ore changes made;	on allow M1, M5, M6 allow M1, M5, M6 allow M1, M2, M6 allow M1, M6	Max 3 Max 3 Max 3 Max 2		
(b)	(i)	Ad ^ı or fa	vantage; reaction goes to aster	completion, not reversibl	e 1		
	Disadvantage; reaction vigorous/dangerous (exothermic must be qualified)						
			or HCl(g) evolved/toxic or CH₃COCl expensive NB Allow converse a Do not allow reaction or ease of separatio	nswers ns with other reagents e. n	g. water		
					1		
	(ii)	ΔS	= Σ S products – Σ S reacta	ants	1		
			□ ΔS = (259 + 187) – (201	l + 161)	1		

$\Box \Box \Box \Box \Box \Box \Delta S = 84 (JK^{-1} mol^{-1}) $ (Ignore units) Allow – 84 to score (1) mark		
	1	
$\Box \Box \Box \Box \Box \Box \Delta G = \Delta H - T \Delta S$	1	
$-216208 \times 94/1000$	1	
$= -46.6 \text{ kJ mol}^{-1} \text{ or} - 46.600 \text{ J mol}^{-1}$		
Allow (2) for – 46.6 without units	1	
(Mark ΔG consequentially to incorrect ΔS)		
(e.g. $\Delta S = -84$ gives $\Delta G = +3.4$ kJ mol ⁻¹)	1	
	1	[15]

M2.B

[1]

M3. (a) (i)

ONLY consider species involved in the step marked

(ii) Cycling clockwise about (*) *CE if step missing*

> $\Delta H_{a}Ba + 1^{st} IEBa + 2^{nd} IE Ba + 2\Delta H_{a}CI + 2EACI + LE - \Delta H_{t}BaCI_{2} = 0 (1)$ +180 + 503 + 965 + 2 × 122 + 2EA -2056 + 859 = 0 (1)EA = -695/2 = - (347 to 348) (1)Ignore unitsCalculation -1 for each errorMark conseq.Notes: -695 scores (2)+(347 to 348) scores (2)-(286 to 287) scores (2)+(286 to 287) scores (1)-573 scores (1)+573 scores (0)

9

(b) $\Delta S = \Sigma S$ products $-\Sigma S$ reactants = (63 +223) - 124 = 162 (1) $\Delta G = \Delta H - T\Delta S \quad \text{or} \quad \Delta H = T\Delta S \text{ or } T = \Delta H/\Delta S \text{ (1)}$ or used correctly $\Delta H = 859 \times 10^{\circ} \text{ (1)} = T \times 162$ T = (5 300 to 5304) K (1)Penalise if units °C -1 for each error + mark conseq.

[13]

4

M4.A

[1]

M5.	(a)	(i) Standard enthalpy change: $\Delta H_R = \Sigma \Delta H_i$ (products) - $\Sigma \Delta H_i$ (reactants) (1) or cycle			
		ΔH _R = ([2 × 0] + [3 × −393.5]) - (-824.2 + [3 × −110.5]) (1) = -24.8 (kJ mol ⁻¹) (1) <i>Allow</i> + 24.8 max one			
		Standard entropy change: $\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants})$ (1)			
		$\Delta S = ([2 \times 27.3] + [3 \times 213.6]) - (87.4 + [3 \times 197.6]) (1)$ = $(54.6 + 640.8) - (87.4 + 592.8) (1)$ = $15.2 (JK^{-1}mol^{-1}) (1)$ Allow -15.2 max one			
	(ii)	$\Delta G = \Delta H - T\Delta S$ (1) ΔH negative and - T ΔS is negative (or ΔS positive or or correct calc) (1) Hence ΔG is always negative (or feasible when $\Delta G \leq 0$) (1)			

9

(b) $\Delta G = O = \Delta H - T\Delta S$ Hence $\Delta H = T\Delta S$ (1)

 $T = \Delta H / \Delta S = 492.7 \times 1000 / 542.6 (1)$ = 908 K (1) penalise missing 1000 by one mark

3

(c) $\Delta G (b) = \Delta G (a)$ $(492.7 \times 10^{3} - T \times 542.6) = (-24.8 \times 10^{3} - T \times 15.2)$ (1) $517.5 \times 10^{3} = 527.4 T$ (1) T = 981.2 K(1) *Allow 980 - 982 Penalise missing 1000 by one mark*

3

M6.C

[1]

[15]